
Elastic instabilities using auto-07p

S Ganga Prasath

1 Introduction

Elastic materials are characterised by their ability to undergo local dilation, shear and twist
under externally applied load and relax to a neutral configuration when the load is removed.
Often when the applied load exceeds a critical value these materials undergo instabilities
characterized by a smooth or dramatic change in their morphology. These instabilities
are captured by identifying the forces at play and deriving governing equations for the
deformation of the material. The deformation field in the material is then related to the
internal stress through a constituent relation, Hooke’s law being a famous one. These elastic
instability problems, as we shall see, are boundary value problems which are notorious to
solve even numerically (analytical solutions are available only in isolated instances).

In this set of 4 tutorials we will see how to solve for the deformation field of the mate-
rial under various active and passive forces and capture the instabilities using auto-07p, a
numerical continuation package. The purpose of this tutorial really is to introduce you to
the power of auto-07p to approach these problems. Though the documentation is a very
good place to start, I realized during my learning process that there are a few important
technical gaps that are often not discussed if one were to go from the documentation to
implementation.

In this 4 part series we will be discussing problems each with an unique aspect in terms
of implementation in auto-07p. It will become clear what I mean by this as we go over the
examples.The problems we will be looking at are

• Bending of an elastica

• Buckling of a sheet

• Oscillating Beam

• Undulatory propulsion on land

2 auto-07p framework

The framework that we use to solve elastic instability problems has 3 major steps.

1

https://github.com/auto-07p/auto-07p

(i) To identify the model equations that describe the deformation field in elastic struc-
ture, derived either phenomenologically or from first principles. This is the part that
captures the physics of the problem.

(ii) Using auto-07p to solve the system with the appropriate boundary conditions and
continue the solution along a physical parameter in the system to see if the morphology
changes with this parameter. auto-07p accepts first-order differential equations of the
form

u′(t) = f(u(t), p), f(., .), u(.) ∈ Rn,

where p are the parameters in the problem.If we have a higher order system, we need
to convert and represent it in this form. auto-07p finds solution to this equations i.e.
f(u(t), p) = 0 and will continue it along the different parameters p in the model. We
will then look at the process of segregating the solution from the files that auto-07p

spits out, post-processing them to understand the results.

(iii) Of course, the last step is to interpret the results and compare with experiments if any.
And then go over to step (i) if there is mismatch between experiments and theoretical
results.

The step I will be focusing in these tutorials is (ii) where we assume that the equations
required to describe the elastic structure are already available. We will then extract the
bifurcation diagram as well as plot the solution files.

3 Bending of an elastica

Before we start the tutorial, it might be useful to note that auto-07p codes for all the
examples are available in this link. The first problem we will solve in this tutorial is the
deformation of an inextensible slender filament known as the elastica. We solve this in 2-
dimensions where the structure can be represented only using curvature information along
the filament (captured up to global translations and rotations). The concept of an elastica
is very old and dates back to the times of Bernoulli and Euler (read more about it here).
We consider an elastica hinged at one end while the other end experiences a point force
~p = (px, py). This problem is described in detail in Prof. Audoly’s lecture notes. The elastic
energy under an externally applied point force is

E =
1

2

∫ L

0

Bκ2(s) ds︸ ︷︷ ︸
Bending energy

−
∫ L

0

(px cosψ + py sinψ) ds︸ ︷︷ ︸
Potential energy

. (1)

Here s is the arc-length and the first term in the above equation is the bending energy term
while the next is the work done/stored potential energy due to the applied force. The work
done is nothing but −~p.~r(L) where ~r(L) is the end point. The equilibrium equation by

2

https://github.com/sgangaprasath/autoTutorial
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-103.pdf
https://catalogue.polytechnique.fr/cours.php?id=2792

extremising this energy or equivalently the Euler-Lagrange equation is

Bψ′′(s)− px sinψ + py cosψ = 0. (2)

Since we have fixed end on one side, this translates to ψ(0) = 0 and a torque free boundary
at the other side implies κ(L) = ψ′(L) = 0. This equation can be non-dimensionalized using
L as the length-scale and (B/L) as the energy scale. After non-dimensionalization we get
ψ′′(s) − px sinψ + py cosψ = 0. The rescaled forces are p̃i = pi/(BL

2), i = x, y (we have
dropped the tildes for simplicity).

In order to implement this equation in auto-07p we need to first convert it into a set of
first order differential equations. We define u1 = ψ(s), u2 = ψ′(s) and this results in:

u′1 = u2, (3)

u′2 = px sinu1 + py cosu1. (4)

We know from geometry that x′(s) = cosψ(s), y′(s) = sinψ(s), which can also be combined
with the above equations to obtain a set of 4 equations. We supplement it with boundary
conditions: u1(0) = u2(1) = x(0) = y(0) = 0.

3.1 Constants, *.f90/*.c, Scripts

For each problem we are interested in solving in auto-07p , there are at least 3 files required:
(i) The constant file (which has a filename as c.*) that inform auto-07p of the details

3

Constants Description Values for elastica
ICP Continuation parameters px/py
NPAR Number of parameters 4
IPS Type of problem 4 for boundary value problems
ISP Switch for bifurcation detection 2 will identify all kinds
NBC Number of boundary conditions 4
ISW Mode for branch switching 1 for normal, -1 for switching to different
UZR User defined points for output px/py
UZSTOP User defined range for parameters px ∈ [−80, 20]
NPR Print & save every NPR steps 20

Table 1: List of constants in the auto-07p with their description and values based on problem
of interest.

of the problem and the numerical details required for the package to prepare the solver.
(ii) FORTRAN/C file with the governing equations, boundary conditions, integral constraints
and the variables that need to be probed from the solution in order to plot them later to
understand the solution. (iii) The most important file in this set is the python script that
runs auto-07p with the specified constants. The script will help us span the phase space
and continue along different solution branches.

In Table. ?? we note some of the most important constants that we will use in this tutorial
set. A very useful cheat-sheet is in the manual under the title “Quick reference” of chapter
10. The fortran code etica.f90 has the equations as a set of first order couple differential
equations with (px, py) as the parameters to vary (we vary only one in this example). This
file also has the initial solution for the specified parameters from which we need to continue
in order to identify the bifurcations in the system. This is a subtle detail which needs to be
kept in mind which is that you always need to know a solution to start continuation. In most
cases, we are always able to find the trivial solution, like here ψ(s) = 0, x(s) = s, y(s) = 0
for px = py = 0. An important thing to note is that the function PVLS has 3 parameters that
probe the value of ψ(1), x(1), y(1).

1 etica = load(’etica ’)

2 mu = run(etica)

3 mu = mu + run(mu ,DS=’-’)

4 mu = mu + run(mu(’BP1’),ISW=-1)

5 mu = mu + run(mu(’BP1’),DS=’-’,ISW=-1)

6 mu = mu + run(mu(’BP2’),ISW=-1)

7 mu = mu + run(mu(’BP2’),DS=’-’,ISW=-1)

8 mu = mu + run(mu(’BP3’),ISW=-1)

9 mu = mu + run(mu(’BP3’),DS=’-’,ISW=-1)

10 # Relabel solutions

11 mu = relabel(mu)

12 # Save to b.mu, s.mu, and d.mu

13 save(mu ,’mu’)

14 # Plot bifurcation diagram

15 p = plot(mu)

4

16 p.config(bifurcation_y =[’psi(1)’])

17 #clean the directory

18 clean()

19 wait()

Listing 1: Python script to run auto-07p and continue solutions along different branches for
the elastica problem.

The python script etica.auto runs the code and finds the bifurcation diagram for the
specified set of parameters which we describe in detail now. We can run this code after
installing auto-07p by simply typing auto etica.auto in the terminal. The first line in the
script loads the files (c.etica, etica.f90) and the run command runs it for the specified
constants. Since in the initial solution we start is for px = 0 and from the constants file we
see that px ∈ [−80, 20], running the code continues along the solution branch for px ∈ (0, 20].
We see that there are no bifurcations and we can now take a detour and change the direction
of continuation by setting DS=’-’ which will continue now from px = 20 → −80. We find
there are 3 bifurcation points that are displayed as BPi, which stands for Branch Point (other
solution types are described in chapter 6 in the manual) and i = 1, 2, 3 is the index of the
branch point. We can now change the solution branch from the original branch, which is the
straight configuration of the elastica, to the bent configuration using ISW=-1 and continue
till px = −80. We then continue along the negative direction to identify the solution when
elastica is bent the opposite direction. We then move to the next branch starting at BP2 and
perform the same set of actions, similarly for BP3. All the results are then saved and can
also be visualized using the plot interface. However we use the results saved in the s.mu to
plot the solution. We briefly describe how this works and the implementation is provided in

5

the plotElastica.ipynb.
When we save the results, auto-07p generates 3 files b.mu, s.mu, d.mu corresponding

to bifurcation diagram, solution and diagnostics. The bifurcation diagram has information
very similar to what is displayed in the terminal when we run the program but with finer
resolution depending on the specified parameters. The solution file on the other hand get
saved every textttNPR steps as specified in the constant file. Further the solution file is a
single file with all the solutions and thus has a specific format in which it is saved. The
initial lines in the file have the parameter values at which the solution is saved followed
by the solution itself. We process the bifurcation diagram and the solution using python

package pandas which makes it easy to segregate and plot the data.
I am sharing here the format of the output file taken from this link, which has valuable

information on how to process the files and will help make sense of the jupyter-notebook I
have shared.

6

https://github.com/sgangaprasath/autoTutorial/blob/main/Tutorial1_Elastica/withoutDefect/plotElastica.ipynb
https://depts.washington.edu/bdecon/workshop2012/f_stability.pdf

4 Buckling of a sheet

Föppl-von Karman equations in 2D captures the buckling of a sheet/strip/beam. The mor-
phology of the sheet is captured using the deformation field along the in-plane direction is
u(x) and the displacement along the out-of-plane direction is w(x). The governing equations
for this deformation field is

S(uxx + wxwxx) + f = 0, (5)

−Bwxxxx + S[wxuxx +
1

2
wxx(2ux + 3w2

x)] + p = 0. (6)

S is the stretching modulus, given by S = Eξ and B the bending modulus is EI where I is
the second moment of area of the sheet, where ξ is the thickness of the sheet, E the Young’s
modulus, f and p are the external forces per unit length.

We can non-dimensionalize the force balance equations using the body-length of the
organism L as the length-scale and E the Young’s modulus of the material as the stress-
scale. Further we know that S ∼ Eξ,B ∼ Eξ3 and using this we can then write the
non-dimensional equations as

(dss + hshss) + f = 0, (7)

−Khssss + hsdss +
1

2
hss(2ds + 3h2s) + p = 0, (8)

where x = sL, u = dL,w = hL,K = (ξ/L)2 is the geometric quantity highlighting slen-
derness, also known as the von Kármán number, f = (fL/Eξ), p = (pL/Eξ) are the non-
dimensional forces. We can solve this system with the following boundary conditions: fixed

7

ends, d|0 = h|10 = 0; zero applied moments, hss|10 = 0; applied tangential strain, ds|1 = −α.
We can again perform a similar analysis to that of the elastica for a fixed value of K and
changing the applied strain and is shown in the figure below. The code corresponding to
these plots is in the 1parameter folder inside Tutorial2 FvK.

The leverage we have using the .auto script is that we can now steer the solution branch
by varying different parameters in the equation. Once you have shifted from the unbuckled
configuration to a bucked one using ISW=-1 (just as in the elastica case), we can change
the continuation parameter to a different one, say K just by manipulating the .auto script.
We can go further using auto-07p and continue the solution by varying both (K,α) by
using the variable ICP and setting limits using the UZSTOP command. For example we
continue along two variables here by adding an integral constraint. This is because we need
to satisfy the constraint NCONT = NBC+NINT-NDIM+1 where NCONT-number of continuation
parameters, NINT-number of integral constraints, NDIM-number of dimensions. In the current
problem we have NBC=6, NDIM=6 and thus we need an integral constraint to be able to
perform continuation along the two-parameter phase space. After performing this, we get a
isocontours in (K,α)-plane representing morphologies of the sheet (a sample is shown in the
figure below).

5 Oscillating beam

The small deflection theory capturing the morphology of an elastic beam is given by the
Euler-Bernoulli equation which reads as

αwtt = −Bwxxxx + p. (9)

Here w(x) is the vertical displacement along the beam’s length, α is the mass per unit
length, B = EI ∼ Eξ4 is the bending modulus, E the Young’s modulus, I the second
moment of area, ξ is the beam thickness and p is the body force per unit length. We can
non-dimensionalize the equation with beam length L as the length scale, T ∼ (αL4/B)1/2

as the time-scale and E as the stress-scale. Rewriting x = sL, t = qT, w = hL, we can write
the non-dimensional equation as

hqq = −hssss + p. (10)

8

https://github.com/sgangaprasath/autoTutorial/tree/main/Tutorial2_FvK

Here the non-dimensional body force p = (pL3/B). We are interested in solving this system
for the boundary conditions: (i) cantilever beam, h = hs = 0 at s = 0, hss = hsss = 0 at
s = 1, with p = 0, (ii) unsupported beam, hss = hsss = 0 at s = 0, 1 with p = β sin(2πs).

Though auto-07p is capable of solving discretized PDEs, we are interested in solving
an eigenvalue problem which is coherent with our requirement to find oscillating solutions
to the beam displacement. This can be done by substituting h(s, q) = <[ĥ(s)eiωq] into the
above equation, we then get

ω2ĥ = ĥssss − p̂. (11)

For the cantilever beam we have the frequency of oscillation as the continuation parameter
and this eigenvalue problem can be solved with the specified boundary condition in auto-07p.
This is shown in the figure attached. The interesting aspect of the second problem of an
unsupported beam is that the boundary conditions are all derivatives in h and thus do not
provide a unique solution. One often needs to introduce pinning conditions to select form
infinite translationally invariant solution. In auto-07p we do this by introducing a body
forcing in the governing equation to get

ω2ĥ = ĥssss − p̂ + λĥ. (12)

and start the continuation with λ = 1 from which point we continue towards λ = 0. After
we do this, we are free to continue along any direction as the initial solution is pinned and
we have found one of the many solutions for λ = 0. In the code attached Tutorial3 EB, we
can have explored the solution for ω = 1 and continued the solution for different β. This
technique of continuing along one branch and then shifting to a different branch is called
homotopy continuation. The boundary condition is not really physical here and the solution
is not interesting either but I chose this condition to illustrate this technique which is super
useful in a variety of scenarios.

6 Undulatory propulsion on land

In this last tutorial, an attempt at coup de grace, we will be combining various techniques
we have learnt in this tutorial and apply to the problem of locomotion on land by an active

9

https://github.com/sgangaprasath/autoTutorial/tree/master/Tutorial3_EB

filament aka snake. Solving the problem in auto-07p is challenging as there are several
parameters in the system. Further we need to impose periodic boundary conditions, which
we have not yet seen in this series. The problem is solved by Guo and Maha, PNAS 2007
where they describe the shape of a snake based on the body centerline. Please refer to the
article for a detailed derivation, the equations read

xs = cos θ, (13)

ys = sin θ, (14)

θs = κ, (15)

Ts = µw + µpPr| sin θ| −Mo
cos(2πs)

2π
− Beκsκ− Viκssκ, (16)

0 = − Pr sin θ + Mo sin(2πs) + κT − Beκss − Viκsss. (17)

Here x, y are the position of the centerline, s is the arc-length, θ is the orientation of the
tangent along the body, κ is the curvature and T is the tension. There are 6 parameters in
the system and they are Pr, Mo, Be, Vi, µw, µp. The boundary conditions that supplement
these equations are of two types, dirichlet and periodic. The dirichlet ones are: x(0) = y(0) =
y(1) = θ(0) = θ(1) = 0, while the periodic ones include: T (0) = T (1), κ(0) = κ(1), κs(0) =
κs(1). As we have seen in our earlier tutorial, NCONT = NBC+NINT-NDIM+1. We have NDIM =

7 NBC=8, so we have two continuation parameters. We would like to find Mo vs Vi, just as
in the paper.

In order to do that we split the task into two parts (problem is too hard to solve in one go).
The first part is to enforce periodic boundary condition for most but not all the variables
(this give confidence in the solution itself), continue from a numerically easily accessible
solution to a point close to the actual region of interest. In the second part enforce the last
periodic boundary condition that was not supplied earlier. In effect the first part ensure we
are continuing along one branch by varying only one parameter and in the second we use
homotopy continuation to asymptotically satisfy the last boundary condition. The itemize
the steps taken and Snake.auto has the implementation of the method described here.

• Initialize: x(s) = s, y(s) = θ(s) = κ(s) = κs(s) = κss = T (s) = 0.

• Choose starting parameters: Pr = 0.18, Mo = 0.0, Be = 0.4, Vi = 1.0, µw = 0.0, µp =
0.2. The starting parameters are close to the one in the Guo and Maha’s paper except
for Mo, µw and Vi. These parameter we shall continue to the exact parameters in
the paper. I chose these parameters upon some experimentation to see to what extent
auto-07p is stable when we start with a trivial guess for snake shape we have chosen.

• Enforce boundary conditions: x(0) = y(0) = y(1) = θ(0) = θ(1) = 0 and T (0) =
T (1), κ(0) = κ(1). We have skipped κs(0) = κs(1), which we shall satisfy using ho-
motopy continuation. As have NBC=7, we can continue only along one parameter. We
shall add the additional boundary condition at the end and identify Mo vs Vi.

10

https://www.pnas.org/doi/pdf/10.1073/pnas.0705442105

• We pin the solution by the same technique we discussed earlier by defining a new
parameter λ and set it to 1 initially which we will continue to 0 later. The equations
them become:

Ts = µw + µpPr| sin θ| −Mo
cos(2πs)

2π
− Beκsκ− Viκssκ− λT, (18)

0 = − Pr sin θ + Mo sin(2πs) + κT − Beκss − Viκsss − λκ. (19)

This is done because the periodic boundary condition provides only translationally
invariant solutions.

• We start the continuation by varying Mo which has the body force and see that the
shape of the snake change as we increase the amplitude.

• We then continue from Mo = 100 by varying λ→ 0.

• We then vary µw, followed by varying Vi i.e. µw = 0.1, Vi = 0.03 to the actual
parameters in the paper.

• The most important step and really the crux of this tutorial is now to enforce the
new boundary condition κs(0) = κs(1). This is done by having a new equations file
(we call SnakeFull.f90) with the additional boundary condition added but with an
additional parameter: κs(0)− κs(1) + PAR(8) = 0. When PAR(8)→ 0, we satisfy the
boundary condition exactly. We need to also supply a new constants file with NPAR,

NBC updated.

• We can continue along Vi with Mo as the free parameter once we have satisfied all the
boundary conditions and obtain the figure in the article which we show below.

11

12

